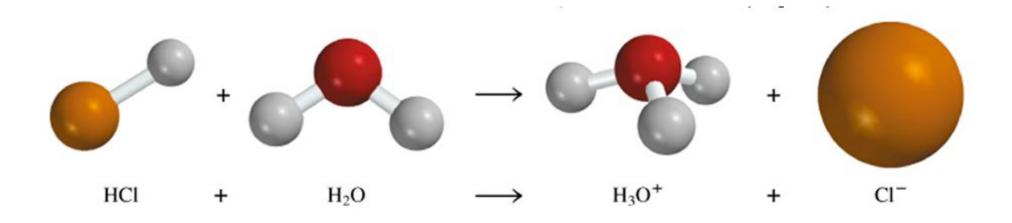


Acids and Bases



Arrhenius Definition (Section 10.1)

An acid contains a hydrogen atom and dissolves in water to form H+/H₃O+ cations.

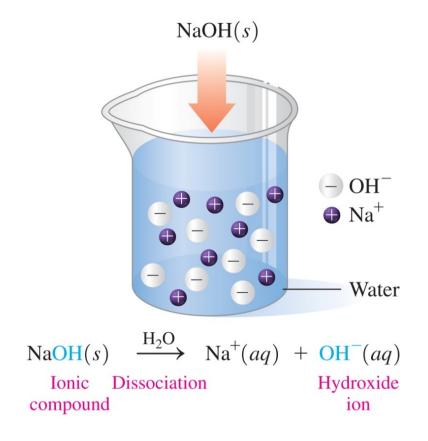

Common Acids

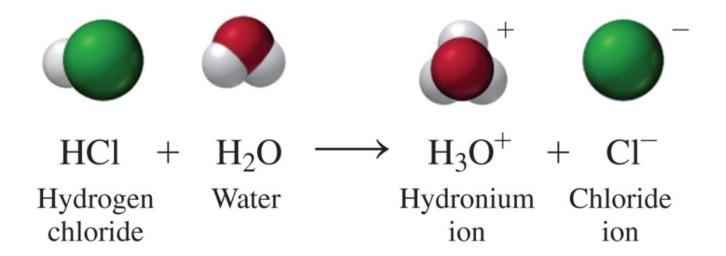
TABLE 10.1 Names of Common Acids and Their Anions

Acid	Name of Acid	Anion	Name of Anion
HCl	Hydrochloric acid	Cl ⁻	Chlor ide
HBr	Hydrobromic acid	Br^-	Bromide
HI	Hydroiodic acid	I_	Iod ide
HCN	Hydrocyanic acid	CN^-	Cyan ide
HNO_3	Nitric acid	NO_3^-	Nitrate
HNO_2	Nitrous acid	NO_2^-	Nitr ite
H ₂ SO ₄	Sulfuric acid	SO_4^{2-}	Sulfate
H_2SO_3	Sulfurous acid	SO ₃ ²⁻	Sulfite
H_2CO_3	Carbonic acid	CO ₃ ²⁻	Carbonate
$HC_2H_3O_2$	Acetic acid	$C_2H_3O_2^-$	Acetate
H_3PO_4	Phosphoric acid	PO ₄ ³⁻	Phosphate
H_3PO_3	Phosphorous acid	PO ₃ ³⁻	Phosph ite
HClO ₃	Chloric acid	ClO ₃ ⁻	Chlorate
HClO ₂	Chlorous acid	${ m ClO_2}^-$	Chlor ite

Arrhenius Definition

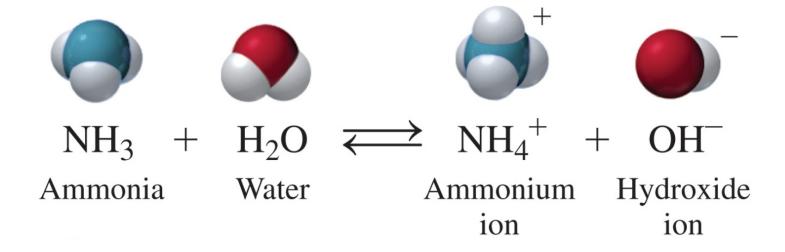
A base contains a hydroxide ion and dissolves in water to form OH- anions.

Antacid Active Ingredients


TABLE 10.7 Basic Compounds in Some Antacids

Antacid	Base(s)	
Amphojel	$Al(OH)_3$	
Milk of magnesia	$Mg(OH)_2$	
Mylanta, Maalox, Di-Gel, Gelusil, Riopan	$Mg(OH)_2$, $Al(OH)_3$	
Bisodol, Rolaids	$CaCO_3$, $Mg(OH)_2$	
Titralac, Tums, Pepto-Bismol	CaCO ₃	
Alka-Seltzer	NaHCO ₃ , KHCO ₃	

© 2015 Pearson Education, Inc.


Bronsted-Lowry Definition (10.2)

A Bronsted-Lowry acid is a proton (H+) donor

Bronsted-Lowry Definition

A Bronsted-Lowry base is a proton (H+) acceptor

Conjugate Acid/Base Pairs

$$HF(aq) + H2O(l) \iff F-(aq) + H3O+(aq)$$

Conjugate Acid/Base Pairs

$$NH_3(g) + H_2O(l) \iff NH_4^+(aq) + OH^-(aq)$$

Concept Check 1

Write the conjugate base for each of the following acids:

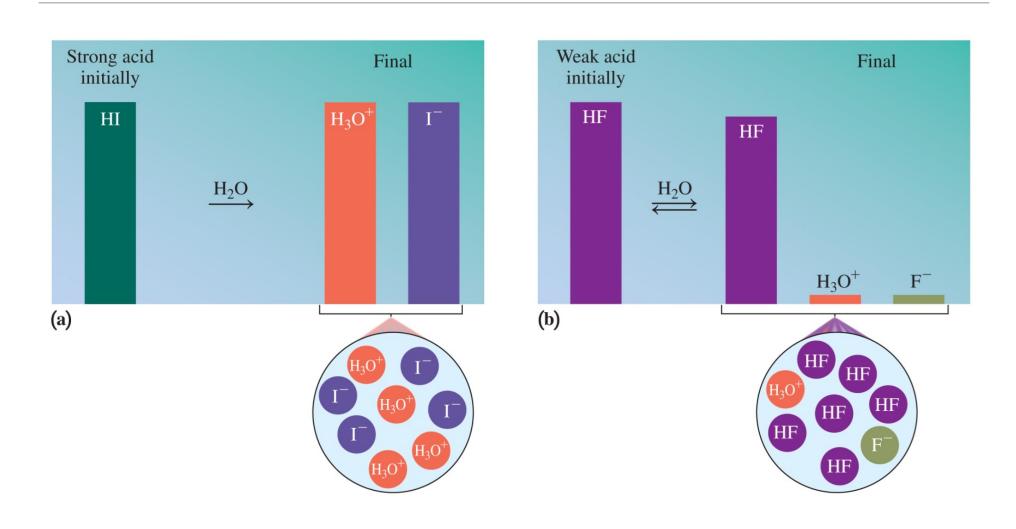
- A. HBr
- B. H₂S
- C. H₂CO₃

Write the conjugate acid for each of the following bases:

- A. NO_2
- B. NH₃
- C. OH-

Concept Check 2

$$HNO_3(aq) + NH_3(aq) \longrightarrow NO_3^-(aq) + NH_4^+(aq)$$


Concept Review (Section 10.2)

CONCEPT REVIEW EXERCISE

1. Give the definitions of a Brønsted-Lowry acid and a Brønsted-Lowry base.

Practice Problems: 1-10

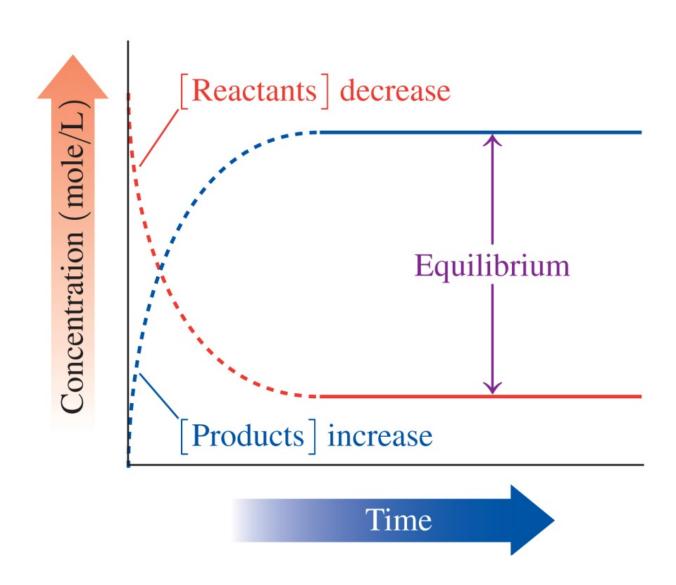
The Strengths of Acids and Bases (Section 10.4)

Strong vs Weak

TABLE 10.3 Common Strong and Weak Acids

Strong Acids				
Hydroiodic acid	HI			
Hydrobromic acid	HBr			
Perchloric acid	HClO ₄			
Hydrochloric acid	HCl			
Sulfuric acid	H_2SO_4			
Nitric acid	HNO_3			
Weak Acids				
Hydronium ion	H_3O^+			
Hydrogen sulfate ion	HSO ₄ ⁻			
Phosphoric acid	H_3PO_4			
Hydrofluoric acid	HF			
Nitrous acid	HNO_2			
Acetic acid	$HC_2H_3O_2$			
Carbonic acid	H_2CO_3			
Hydrosulfuric acid	H_2S			
Dihydrogen phosphate	$H_2PO_4^{2-}$			
Ammonium ion	$\mathrm{NH_4}^+$			
Hydrocyanic acid	HCN			
Bicarbonate ion	HCO_3^-			
Hydrogen sulfide ion	HS ⁻			
Water	H_2O			

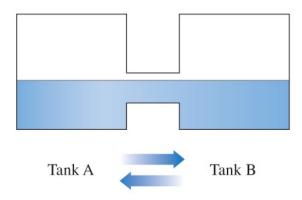
Chemical Equilibrium

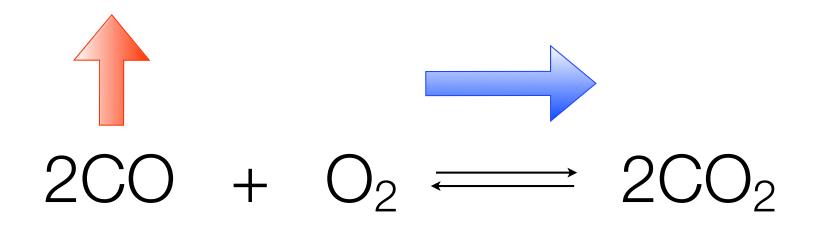

The forward reaction proceeds to the right.

$$CO + H_2O \longrightarrow CO_2 + H_2$$

The reverse reaction proceeds to the left.

The reaction is occurring in **both directions** simultaneously (equilibrium).


Chemical Equilibrium



The system will shift to oppose any change.

Le Chatelier's Principles

Concentration Change

If we increase the CO concentration

The system will shift to oppose any change.

The equilibrium will shift to the right

Concentration Change

$$2CO + O_2 \stackrel{\longleftarrow}{\longleftarrow} 2CO_2$$

If we increase the CO₂ concentration

The system will shift to oppose any change.

The equilibrium will shift to the left

Concentration Change

$$2CO + O_2 \stackrel{\longleftarrow}{\longleftarrow} 2CO_2$$

If we decrease the CO₂ concentration

The system will shift to oppose any change.

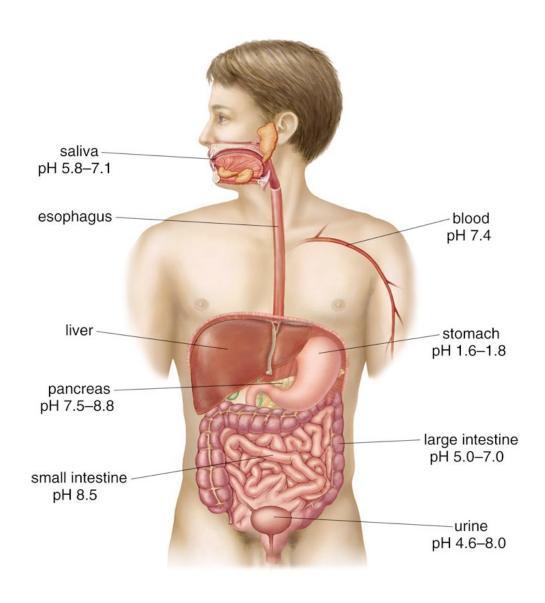
The equilibrium will shift to the right

Concept Check

$$2Cl_2 + 2H_2O + heat \longleftrightarrow 4HCl + O_2$$

Predict the direction of equilibrium when the

[H₂O] decreases [Cl₂] increases


[HCI] increases [O₂] decreases

pH Scale

25

The pH of Body Fluids

Concept Review (Section 10.4)

CONCEPT REVIEW EXERCISES

- 1. Explain the difference between a strong acid or base and a weak acid or base.
- 2. Explain what is occurring when a chemical reaction reaches equilibrium.
- 3. Define pH.

Practice Problems: Worksheet

Buffers (Section 10.5)

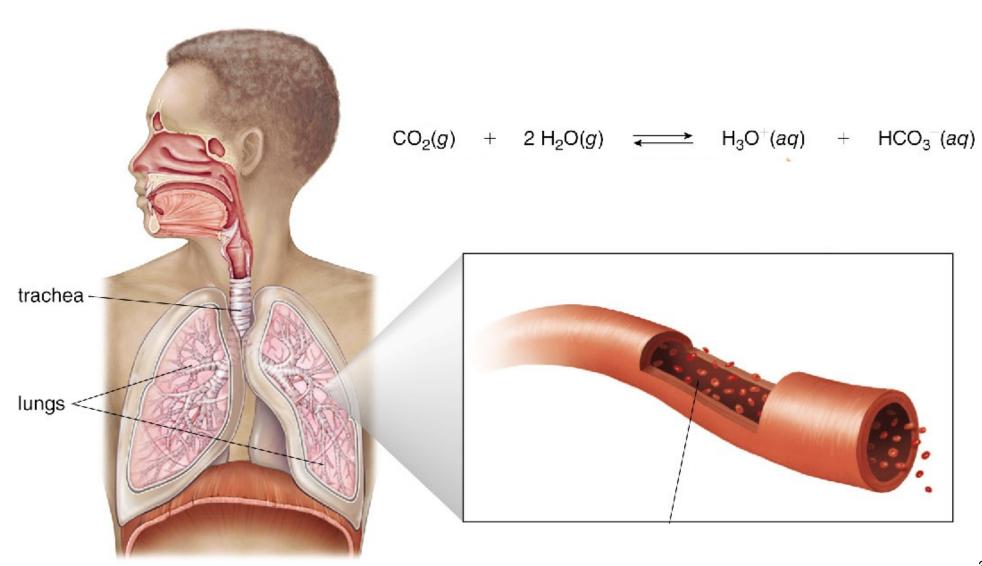
A buffer is a solution whose pH changes very little when acid or base is added.

Resists change in pH because:

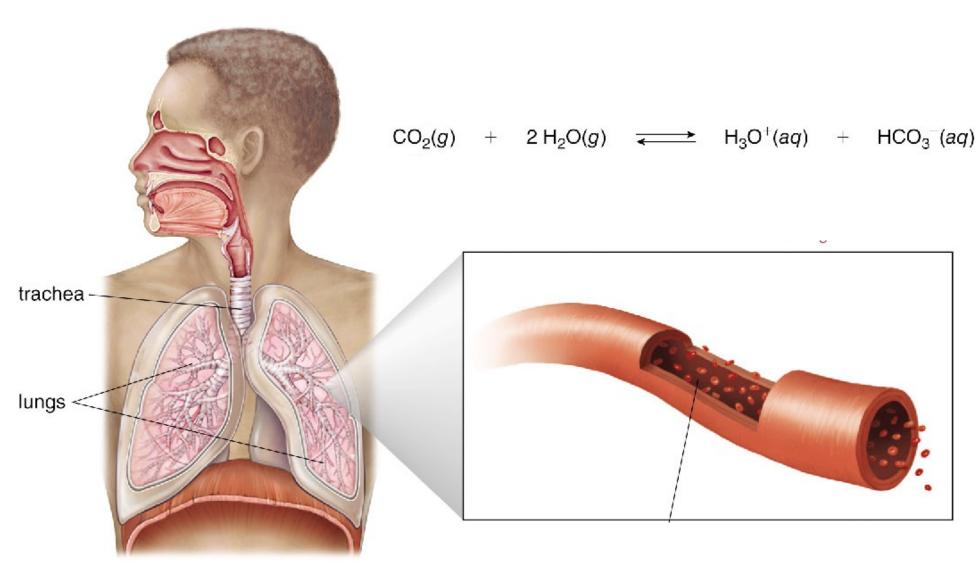
added acid reacts with base

added base reacts with acid

Human Blood Buffer


Normal blood pH is between 7.35-7.45

CO₂ is constantly produced by metabolism of food


$$CO_2 + H_2O \iff H_2CO_3 + H_2O \iff H_3O^+ + HCO_3^-$$

The [CO₂] is directly related to the pH of the blood

Respiratory Acidosis

Respiratory Alkalosis

Concept Review (Section 10.5)

CONCEPT REVIEW EXERCISE

1. Explain how a buffer prevents large changes in pH.

Practice Problems: Worksheet